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Abstract: This report describes a guidance system for agile vehicles 
based on a hybrid closed-loop model of the vehicle dynamics. The hy- 
brid model represents the vehicle dynamics through a combination of 
linear-timeinvariant control modes and pre-programmed, finiteduration 
maneuvers. This particular hybrid structure can be realized through a 
control system that combines trim controllers and a maneuvering con- 
trol logic. The former enable precise trajectory tracking, and the latter 
enables trajectories at the edge of the vehicle capabilities. The closed- 
loop model is much simpler than the full vehicle equations of motion, yet 
it can capture a broad range of dynamic behaviors. It also supports a 
consistent link between the physical layer and the decision-making layer. 
The trajectory generation was formulated as an optimization problem 
using mixed-integer-linear-programming. The optimization is solved in 
a receding horizon fashion. Several techniques to improve the computa- 
tional tractability were investigate. Simulation experiments using NASA 
Ames 'R-50 model show that this approach fully exploits the vehicle's 
agility. 

1 Background 

There exist numerous tasks and missions for unmanned aerial vehicles (UAVs) where 
agile maneuvering is necessary or represents a competitive advantage. Examples in- 
clude: tracking of moving targets, flying in cluttered spaces (urban), tactical flight 
(nap of the earth). The execution of agile maneuvers typically involves both pilot- 
ing skills (quickness and coordination) and higher-level thinking (knowledge of the 
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environment and the objectives of a mission). To benefit from their full performance 
potential, unmanned systems must be able to automatically determine their flight- 
path accounting for the dynamics of the vehicle and the information available about 
the physical environment and the mission or task. 

In the following we first provide a short overview of key results obtained in 
our research on dynamics and control of miniature agile helicopters. These results 
establish the framework on which our guidance approach is built. In Section 2 we 
give an overview of the guidance problem for agile vehicles. We summarize earlier 
work using a maneuver automaton (MA) and introduce the more general linear- 
time-invariant MA (LTI-MA) used in our hybrid guidance approach. In section 3 we 
describe the formulation of the trajectory generation problem for the hybrid LTI-MA 
as an optimization problem using mixed-integer-linear-programming (MILP) . We 
highlight some key developments that were necessary to make this method tractable 
in the MILP framework. Section 4 show simulation results using our guidance system 
on NASA Ames’ small-scale R-50 helicopter model. Finally, in section 5 we provide 
conclusions to this work. 

1.1 

Miniature rotorcraft are naturally endowed with dynamic capabilities that easily 
surspasse those of full-size manned vehicles. A good display of these capabilities is 
provided by human pilots flying miniature acrobatic helicopters. We used dimen- 
sional analysis as a theoretical basis for understanding the effects of scaling and 
validate the vehicle behavior as seen in MIT’s X-Cell helicopter and similar acro- 
batic hobby helicopter. We applied Froude (dynamic similarity) and Mach scaling 
hypothesis on models identified for Carnegie Mellon’s Yamaha R-50 and MIT’s X- 
Cell .60 [15, 141. With this data we were able to show and validate the following 
trends: for a F’roude-scale type model (R-50), the attitude rate sensitivity increases 
proportionally to N1j2 (the scale ratio N means 1/N the rotor diameter of the full- 
scale prototype vehicle) and its thrust-to-weight ratio stays relatively unchanged; 
for a Mach-scale type model (X-Cell), the attitude rate sensitivity, as well as the 
thrust-to-weight ratio, increase proportionally to N .  High rate sensitivity allows for 
quick changes in thrust and travel direction; high thrust-to-weigh values are impor- 
tant to accelerate the vehicle, and compensate for gravitational forces. For example, 
the X-Cell exhibits an attitude rate sensitivity up to 200 deg/sec in pitch and roll, 
and a thrust-to-weight ratio exceeding 2. 

Dynamic Capabilities of Miniature Rotorcraft 

1.2 

The analysis of human control of a highly agile small-scale helicopters shows two 
distinct regimes: tracking of trim trajectories and maneuvering [17, 91. The two 
domains are distinctly set apart in terms of control strategy and dynamic conditions: 

Automatic Control of Agile Vehicles 
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0 Tracking operations take plxe around trim trajectories; control around these 
trajectories involves continuous feedback; the dynamics are approximatively 
linear. 

0 Maneuvering actions are of finite durations and start and end on trim trajec- 
tories; the control activity typically involve large amplitude actions that result 
in large amplitude state changes (they often exploits the full available range 
of inputs and states); the dynamics accross this range is typically nonlinear; 
control is dominated by feed-forward actions, feedback may include discrete 
switching events triggered by state tresholds. 

Tracking trim trajectories is a well researched area, maneuvering, however, is 
more challenging due to the highly nonlinear dynamics. Instead of applying tra- 
ditiond nonlinear control methods (e.g. feedback linearization) we developed a 
maneuvering control logic inspired by human control strategies [lo]. The control 
logic combines angular rate controllers and a timing logic that allow tracking of pre- 
programmed reference trajectories. The amplitude and timing of these trajectories 
were extracted from piloted flight-test experiments; timing in the sequence is also 
triggered based on the vehicle states. Several acrobatic-type maneuvers were suc- 
cessfully implemented using this approach, including a snap roll, a hammerhead, and 
a split-S [ll]. Trim tracking controllers (gain scheduled linear quadratic controllers) 
are used prior to and upon exit from the maneuver. 

Figure 1: Hybrid control architecture: the helicopter can be controlled via velocity 
controllers or via a maneuver scheduler that implements pre-programmed maneu- 
vers. 

Combining trim tracking controllers and the maneuvering control logic enables 
a broad range of behaviors to be automatically executed. Figure 1 illustrate the 
implemented hybrid control architecture; Figure 2 shows this system in the form of 
a finite automaton: at any point in time the vehicle can either track trim trajectories 
using the linear tracking controllers or execute a finite number of pre-programmed 
maneuvers. 
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Figure 2: Abstraction of the hybrid control system as a finite state automaton. 

2 Guidance of Agile Vehicles 

Once the control architecture is available to implement a wide range of dynamic 
behaviors, the challenge is to exploit these capabilities to execture a task or mis- 
sion in an autonomous fashion. A fundamental problem for enabIing autonomous 
operation is that of guiding the vehicle between two geographic locations. 

Motion planning for dynamic systems can be mathematically formulated using 
the framework of optimal control [4]. The complexity of a motion planning problem 
grows with the complexity of vehicle dynamics and the complexity of the envi- 
ronment they have to operate in. Highly agile unmanned aerial vehicles, such as 
small-scale rotorcraft, have complex dynamics and they may be expected to operate 
in the presence of stationary or even moving obstacles. Moreover, only part of the 
environment may be known accurately. 

Solving the optimization problem in the full vehicle statespace is usually not 
computationally tractable for the conditions at hand. Therefore motion planning 
problem are often solved in some simplified or reduced form. These simplifications 
can easily introduce performance limitations. 

2.1 Hybrid Guidance Philosophy 

Our first experiments with a hybrid guidance approach [16], was based on the hybrid 
maneuver automaton (MA) [5, 7). The main idea of the MA is to represent the 
vehicle dynamics through it’s maneuver space: the states coincide with trimmed 
flight, and the transitions among states coincide with maneuvers, that is, transitions 
between trim conditions. Taken together, the states and transitions determine the 
vehicle’s trajectory. Such an automaton representation of the original nonlinear 
system represents a quantization of the original dynamics. The motion planning 
problem can then be solved though optimization on the maneuver space instead of 
the vehicle state-space. 
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Maneuver 
dash to cruise 
quick stop 
quick Turn 
split-s 
hammerhead 

The state-space of a hybrid representation like the maneuver automaton is usu- 
ally much smaller than that of the original system. It may thus be a more appropri- 
ate model to use for high-level activities such as trajectory planning or task selection. 
In some low-dimensional cases (and in the absence of obstacles) a policy based guid- 
ance soiution that uses a pre-computed d u e  fimction can be used [6].  This obviates 
the need to perform it~l optimization online. The value (or cost-tego) function is 
calculated by applying dynamic programming techniques (value iteration [3]). 

The maneuver automaton, however, has several drawbacks. These are primarily 
related to the fact that the vehicle dynamics are constrained to a finite set of motion 
primitives. In particular the continuous velocity mode is discretized into a finite 
number of discrete trim conditions with constant velocities. Restricting the vehicle 
behavior to these trims precludes the type of continuous tracking that is required 
for precise and smooth trajectories. In addition, to compute the value function the 
space in which the vehicle evolves has to be discretized. We found that the lack of 
continuous velocity modes and the space discretization used in the value function 
can be an issue when precise navigation is required [16, 231. To achieve higher 
precision using a MA would require a finer quantization of its dynamics, as well as a 
finer discretization of the space for the value function. With such requirements, the 
complexity of the maneuver automaton, and the corresponding dynamic program 
and value function, would quickly increase beyond the practical limits. 

Utility 
rapid acceleration from hover to one of the cruise conditions 
rapid transition from cruise to a full stop (hover) 
rapid turn resulting in a pre-determined heading chage 
reversal of the flight direction with negative altitude loss 
reversal of the flight direction with positive or no altitude loss 

2.2 Hybrid LTI-MA Representation 

The combination of continuous tracking and maneuvering is key to agility. The 
former provides the flexible tracking capabilities required for smooth and precise 
flight; the latter provides dynamic capabilities that exceed what is possible under 
the LTI modes. Maneuvers are also iateresting because they can be designed to 
accomplish specific operational effects, e.g., quick acceleration/deceleration, a sharp 
turn, or a direction reversal. Table 1 describes several maneuvers that could be used 
with a rotorcraft along with their operational utility. Figure 3 illustrates some of 
these maneuvers. 
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Figure 3: Illustration of maneuvers that can be used in the LTI-MA. The hammer- 
head and split-S have been implemented on MIT’s helicopter. 

The vehicle dynamics under our hybrid control architecture can be described by 
a finite-state automaton. Figure 4 shows a graph representation of such a machine 
with three LTI modes and seven maneuvers. 

Flight-test experiments with MIT’s hybrid control architecture [8] showed that 
first-order models already provide a good approximation of the body’s translational 
(velocities u, v) and rotational (heading rate r )  responses: 

The vertical motion is described by the altitude rate ( A ) ;  $ is the heading angle; 
the r.,i are the time constants for the different states 0.  Several modes (indice i) 
can be used to account for changing characteristics accross the flight envelope. 

The effect of maneuvering is represented by the state transition A.,p incurred 
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LTI mode transitions 

Maneuvers 

Figure 4: Graph representation of the hybrid LTI maneuver automaton. The vehicle 
is either in a LTI mode, tracking trim trajectories, or executing a finite duration 
maneuver. 

during a maneuver (indice p )  : 

u(t+ATp) = u(t) +Au, 
v( t+ATp) = v( t )  +Avp 
lL(t +AT,) = h(t) + A i p  
T(~+AT' )  = ~ ( t )  +AT,  

along with the longitudinal Axp, lateral Ayp, vertical Ah, body-frame displace- 
ments, and heading change A&. 

The benefits of LTI-MA model are several. First, the model captures the essential 
vehicle behavior under our hybrid control architecture; the details about the physical 
layer and control system are abstracted out. Only the details that are relevant to the 
trajectory planning are represented. Moreover, compared to the MA, the modeling 
problem with the LTI-MA consist of selecting a few LTI-modes and a small set of 
maneuvers, thus it significantly simplifies the development of the motion primitive 
library. 

3 Trajectory Generation with the LTI-MA 

The generation of trajectories with a hybrid LTI-MA system can be formulated 
as an optimization problem using mixed-integer-linear programming (MILP). The 
MILP framework lends itself to the particular structure of the LTI-MA. Namely, the 
decision problem involves both continuous decision variable (velocity commands and 
turn rates in the LTI modes) and discrete decision variables (maneuvering), which 
are tied to logical-type conditions (e.g., whether the state satisfies the maneuvering 
conditions). The combination of continuous and binary (or integer) variables also 
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enables a number of other trajctory planning features to be explicitly accounted for 
in the optimization. These include, obstacles (and other terrain feature), LTI mode 
switching, or timing constraints. The MILP optimization problem can be solved 
using commercial solvers (CPLEX [13]). 

3.1 MILP Trajectory Optimization 

The general form of a mixed-integer-linear-program is: 

min J ( x )  
subject to: 

X 

4 ( z )  I Mb 
AND l 2 ( ~ )  I M(l - b)  

b E (0711 

where J ( z )  is a (piecewise) linear objective function; l l ( z ) , l2 (x)  are constraints (not 
limited to two), which must be linear; and b is a binary variable. We see here how 
logical decisions can be incorporated in the optimization problem. Namely, here 
the cost function J ( z )  has to be minimized subject to either one of two constraints 
l,(z), 12(z) on the continuous decision variable z. When b = 0, constraint l , (z)  
must be satisfied, whereas l 2  (z) is relaxed. Namely, if M is chosen sufficiently large, 
& ( E )  5 M(1- b)  is always satisfied independent of the value of z. The situation is 
reversed when b = 1. Since b can only take the binary values 0 or 1, at least one of 
the constraints l , (z)  and &(z) will be satisfied. 

For the purpose of trajectory optimization the MILP minimizes a piecewise lin- 
ear objective function subject to the vehicle dynamics and other constraints. We 
experimented with both minimum-time [22] and minimum position-error formula- 
tions for the objective function. We used the latter because it is computationally 
less expensive than the former, and does not dramatically affect the performance 
of the trajectory. The position-error objective function minimizes the 1 - nurm of 
the error between a given waypoint location and the vehicle trajectory, over a finite 
N-step prediction horizon. 

MILP has already been applied for trajectory optimizations. These past appli- 
cations mainly focused on high-level operational aspects, such as multi-vehicle plan- 
ning in the presence of known obstacles [19], mission coordination constraints [lS], 
as well as path safety [20]. These problems were all entirely formulated in the in- 
ertial space using highly simplified vehicle dynamics. In order to account for the 
vehicle dynamics in the LTI-MA form we had to develop a linear approximation of 
the nonlinear vehicle kinematic equations. 
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3.2 Approximate Kinematics 

The nonlinear vehicle kinematics relate the body-frame velocities u, v to the inertial- 
frame velocities VN, VE: 

VN = ucos$-usin$ 
VE = usin$+vcos$ 
$ = r  

(7) 

To obtain a linear approximation of these transformations, we segmented the 
continuous heading $ in a finite number of sectors and approximated the kinemat- 
ics in each sector by linear equations with constant values for the sine and cosine 
functions. With this approach, the nonlinear kinematic equations are replaced by 
a set of linear equations. Binary variables are used to track in which segment the 
heading is at each decision step, and enforce the corresponding set of linear kinemat- 
ics. The vehicle trajectory is then computed through integration of the approximate 
inertial velocities. 

Different levels of angiilar resolution cao be used. Ths drawback is t,hat the 
addition of each heading segment requires one additional binary variable (more ef- 
ficient binary coding can be used [Zl], however, it is not clear that they improve 
computation time). Using this approach with few segments (8, i.e., 45deg resolu- 
tion), however, resulted in unsatisfactory errors in the predicted vehicle trajectory. 
We were able to reduce the prediction errors by forcing the vehicle headiig to settle 
on the discrete heading directions at each sampling time. 

3.3 Computational Considerations 

A drawback of MILP is that the computation time increases at least polynomidy 
with the number of variables and constraints. The optimization problem has to 
solved in near real time. Solution times of about 1 sec were considered acceptable 
and used as criteria in our evaluation. In an effort to limit the complexity, tradeoffs 
inevitably take place. For example, a typical tradeoff is  the one between the richness 
of the dynamic behavior and the gTanularity and length of the planning horizon. 

We looked at ways to simplify the MILP formulation and reduce computation 
time. Increase in the computational resources may alleviate the need for such sim- 
plifications, however, we believe that techniques to reduce the computational com- 
plexity also have their merit in helping find formulations that are better tailored to 
the fundamental characteristics of the trajectory planning problem. 

3.3.1 Complexity factors and tradeoffs 

For our obstacle-free MILP body-frame planner formulation, the complexity (solu- 
tion time) is a function of the following dimensions: the number of decision steps in 
the planning horizon; the order of the vehicle’s LTI dynamics; the number of contin- 
uous decision variables (control inputs); the number of maneuvers; and the number 
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of segments used in the heading quantization. Future formulations will include 
position constraints to encode obstacles, which will add to the above dimensions. 

With first-order, closed-loop LTI dynamics with longitudinal, lateral and turn 
rate control (three decoupled first-order equations of motion, discretized at T, = 
1 sec), we found that a planning horizon length of about 8 to. 10 decision steps was 
a maximum for solution times under about one second. 

Vehicles like rotorcraft exhibit a broad range of dynamic behaviors and can 
evolve in different types of environments. A planner that works over the various op- 
erating and environmental conditions would be ideal, however, a single formulation 
of the entire planning problem may not be computationally tractable. Making the 
trajectory planning real-time tractable involves limiting the number of variables, 
constraints, and length of planning horizon. To improve computational tractability 
we need to exploit the inherent characteristics of the planning problem. 

3.3.2 Planning modes 

The chharacteristics of the planning problem, over a short decision horizon, is largely 
a function of the flight conditions (e.g., hover or cruise) and the environment and 
operational context (e.g., how cluttered the space is). For example, in a cluttered 
space, precise trajectories that employ coordinated control actions are required; the 
maximum vehicle speed is typically limited. In contrast, in an obstaclefree space, 
the rotorcaft will typically employ a subset of the full dynamics, and it’s speed will 
be on the faster side. 

To simphfy the MILP formulation we introduced planning modes that exploit the 
changing planning requirements as a function of the flight conditions and operational 
context. We designed the following three modes: 

0 Closerange, for full helicopter-like coordination and precise trajectories. 

0 Mid-range, for airplane-like flight coordination and maneuvering. 

0 Extended-range, for longer range planning in airplanelike flight. 

The parameters for the different planning modes are shown in Table 2. The 
longer sampling interval used in the extended range planner allows to increase the 
planning range without increasing the number of steps in the planning horizon. This 
mode results allows a multi-resolution planning. The same principle applies to the 
heading quantization. All modes use the quantized kinematics with 9 segments to 
cover a range of kl80deg (45deg resolution). The mid-range maneuvering mode has 
9 segments for a k30deg front and rear range. 

3.3.3 Maneuvering windows 

To reduce the number of binary variables needed to keep track of the maneuvering 
actions along the planning horizon, maneuvering can be restricted to a specific region 

10 



Table 2: Description of the planning mode parameters. All modes use a prediction 
horizon of N = 8 steps. The units for the control ranges are m/sec for velocities u 
and o, and deg/sec for turn rate r. 

Closerange 
Mid-range 
Ext.-range 
Mid-range+ 

Mode I T. I controls I rem. ranges I heading sements I maneuvers 
1 sec u,o, r -1..3;&3;&90 9 (f180") none 
1 sec u,r - 1..10;&90 9 (f180") none 
2 sec u,r - 1. .10;&45 9 (f l80")  none 
1 sec u,r -1..10;&90 9 (f30") hammerhead 

of the horizon. We experimented with limiting maneuvering to a small region (1-3 
decision steps) in the begining of the planning horizon. This is consistent with using 
maneuvers reactively, i.e., when a sudden change in the environment (such as an 
obstacle) requires an extreme reaction. 

3.3.4 

Each planning mode is characterized by a reachable set of destination points. Fig- 
ure 5 shows a conceptual representation of the reachable sets for our different planner 
modes. With the extended planner reaching the furthest and the local planner with 
its reachable region concentrated around the origin. The conical regions correspond 
to the mid-range planner with maneuver, which has a tighter heading range. Note 
that these sets are function of the initial and final state. Figures 6 and 7 show the 
computed time-tego for all destination points in the reachable sets of the close- 
range and mid-range with maneuver modes, respectively. The first is computed for 
the vehicle starting at rest, the second for the vehicle starting at 5m/sec. 

In our experimental scheme the planning mode is selected based on the active 
reachable set (in which mode's reachable set the waypoint falls) and a factor that 
takes into account for the effect of vehicle state on the reachable set. If multiple 
modes are active, the one with the smallest reachable set is selected. 

Taking some decisions outside of the actual trajectory optimization can spare sig- 
nificant computing time. Introducing context sensitive planning modes corresponds 
to decoupling certain aspects of the decision problem and introducing a decision 
hierarchy. Being able to recognize a priori certain features of the planning problem, 
from the vehicle state and environment features, allows to reduce the trajectory 
search space. For example, if it is possible to determine if the vehicle state and envi- 
ronment allows/precludes certain types of maneuvers or LTI behaviors, a planning 

Planning mode selection: decision hierarchy 

mode with a specific set of maneuvers and LTI modes could be used, reducing 
search space and time to compute the solution. 

With our planning modes we were able to achieve computation times that 

the 

are 
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Figure 5:  Conceptual representation of the reachable set of goal point,s for different 
planning modes. The modes are different in their use of control variables, com- 
manded speed ranges, heading quantization, and available maneuvers. 

within our performance criteria. Figures 8 and 9 show the solution times required 
for the destination points in the reachable sets of the close- and mid-range (with 
maneuver) modes, respectively. We can see that trajectories to all destinations in 
the reachable sets require less than 1 sec to compute. 

4 Results 

In this section we present simulation results that were obtained by applying our 
approach to  the guidance of the small-scale Yamaha R-SO helicopter. The results are 
based on the closed-loop R-Max equations of motion provided by NASA Ames [12]. 

The purpose of the simulation is to demonstrate that the LTI-MA based guidance 
system enables trajectory planning that makes use of the vehicles agility, namely that 
it exploits the helicopter’s multivariable control capabilities (longitudinal, lateral, 
and yaw motion) augmented with discrete maneuvering actions. 

4.1 Implementation 

The planner’s task in our simulations is to guide the aircraft between a series of 
predetermined waypoints in an obstacle free environment. The planner switches 
from one waypoint to the next when an arrival criteria is satisfied. In the following 
experiments the arrival criteria, which is an attribute of each waypoint, consists of 
two parameters: a perimeter around the waypoint location speciiied by a radius 
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Figure 6: Reachable set for close-range mode, showing the time to reach different 
positions on a grid from rest at the origin (0, 0), heading north ( 2 ~ ) .  

bm-to-go file1 

Figure 7: Reachable set for mid-range with maneuver mode, showing the time to 
reach different positions on a grid from the origin (0, 0), at an initial speed of 5m/sec, 
heading north ( E N ) ,  with a direction reversal maneuver. 
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Figure 8: Solution time for the destination points in the planner’s close-range mode’s 
reachable set. 

conpttlngm*1 

Figure 9: Solution time for the destination points in the planner’s mid-range with 
maneuver mode’s reachable set. 
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R, and a maximum velocity, speciiied by a magnitude V; both have to be satisfied 
simultaneously, at which instant the next waypoint coordinates are provided to the 
planner. 

The planner computes the entire sequence of control inputs that drive the aircraft 
along a trajectory leading to the specified waypoint. The entire sequence could 
be implemented without being recomputed on the way to the waypoint. However, 
because of disturbances and modeling uncertainties (and approximations used in the 
planner) the trajectory may deviate from the nominal, planned one and miss the 
waypoint. To compensate for these effects, the planner is implemented in a receding 
horizon fashion: the planner is replans a new trajectory, using the latest state 
information, as the vehicle moves toward the waypoint. In the following simulations, 
replanning was performed at every five time steps, or when a better planning mode 
was reached. 

4.2 Simulations 

Results from three simulation experiments are shown. In the first simulation, the 
helicopter is hovering at (0,O) and must go to a location 30m ahead (30,0), and 
then back to the departure point (0,O). Figure 10 shows the vehicle trajectory, 
figure 11 shows the commands and the active planning mode, and figure 12 shows 
the vehicle states. The arrival criteria for the waypoint (30,O) is R = 4 meters and 
d w  5 2m/sec. The travel time for the entire trip is 18 seconds. 

We can see that the planner exploits the full control input range (e.g. u d  up 
to  l h / s e c ) .  Also, when changing direction to go from the first waypoint (30,O) 
back to the departure location, the helicopter uses both heading and side slip to 
effectively turn back. This behavior illustrates the planner’s ability to exploit the 
full command coordination of the vehicle’s LTI velocity tracking controllers. 

Figure 11 also shows how the planning mode changes as the vehicle moves t e  
ward the waypoints. The integers (1,2,3,4) correspond to the following modes: (1) 
close-range planner; (2) mid-range planer; (3) extended range; (4) mid-range with 
maneuver. We see that at the starting instant, the first waypoint falls within the 
mid-range mode. Then, as soon as the first few control actions are applied, the ve- 
locity increases (time step 3), the planner gets in the extended-range mode. Then, 
as the vehicle approaches the first waypoint, the close-range planner is enabled, al- 
lowing for more precise fully coordinated trajectories. When the return waypoint 
is provided, the planner goes back to extended-range mode until it approaches the 
final waypoint, where it goes back to the close-range mode. 

The second simulation shows the same direction-reversal task, but here, the 
return waypoint is offset laterally from the origin (0,lO). The trajectory is shown 
in Figure 13, and the commands and states in Figures 14 and 15, respectively. 

The last simulation shows the same direction reversal task with lateral offset, 
only here, the mid-range planning mode has a hammerhead maneuver available. 
The trajectory is shown in Figure 16, and the commands and vehicle states in 
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Figure 10: Vehicle trajectory for simulation 1: the helicopter starts from hover at 
(0,O) and has to go to a location 30m ahead (30,0), and then back to the departure 
point (0,O). 

5 
0 2 d e e 10 I2 1. 1. I. 

I im 

Figure 11: Commands and planner mode. Figure 12: Helicopter states. 
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Figure 13: Vehicle trajectory for simulation 2: the helicopter starts from hover at 
(0,O) and has to go to a location 3Om ahead (30,0), and then back to a destination 
offset 1Om from the departure point (0,lO). 
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Figure 14: Commands and planner mode. Figure 15: Helicopter states. 
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Figures 17 and 18, respectively. The arrival criteria for the first waypoint was set to 
R = 10 meters and the maximum speed was relaxed, so that the vehicle approaches 
the waypoint with sufficient speed to initiate the hammerhead (which requires a 
minimum longitudinal speed u of 5m/sec). The maneuver is initiated at time step 
6, while approaching the first waypoint. The maneuvering action is visible from the 
switching to planning mode 4 in Figure 17, and from the 180deg headind jump in 
Figure 18 . 

4.3 Conclusions 

The dynamics of agile vehicles can be efficiently described by a hybrid closed-loop 
model, combining linear time invariant (LTI) control modes with discrete maneu- 
vering actions. This hybrid LTI-MA form was motivated by the tracking and ma- 
neuvering control modalities that were observed in the human pilot behavior during 
acrobatic flight experiements with a small-scale helicopter. This LTI-MA structure 
can be realized by a hybrid control system like the one developed at MIT, which 
combines LQ controllers for tracking, with a maneuvering control logic for the au- 
tomatic execution of maneuvers. 

Such a model of the vehicle dynamics is much simpler than the vehicle’s full 
equations of motion, nevertheless it can describe a broad range of dynamic behav- 
iors. In contrast to other approaches used to simplify the representation of the 
vehicle dynamics for purspose of motion planning, the LTI-MA reduces the size of 
the state-space in a meaningful way, i.e., by encoding the dynamics from a utzlitg 
standpoint (how the vehicle is flown or used). This representation also supports a 
strong and consistent link between the physical layer (driven by ordinary differential 
equations of motion) and the high-level decision-making layer (driven by continuous 
and discrete, logical decision variables). 

The trajectory generation problem with the LTI-MA was formulated as an opti- 
mization problem using mixed-integer-linear-programming (MILP). This approach 
is suited to the hybrid structure of the LTI-MA, i.e., the combination of continuous 
control variables (in the LTI modes) and discrete maneuvering decisions. The op- 
timization problem has to be solved in real-time, hence computational tractability 
is a key issue. Several techniques were used to reduce the size of the optimization 
problem. 

Simulation results show that the LTI-MA representation combined with the 
MILP optimization produces trajectories that succesfully exploit the flexibility and 
precision of the LTI modes and the performance of the maneuvers. This approach 
has several other attractive attributes. The MILP framework allows to explicitly 
take into account other features that are relevant to trajectory generation, such as 
obstacles or nwfly areas. The LTI-MA/MILP formulation can also support reactive 
actions. As such it may also be well suited for guidance in the immediate, sensed 
environment. 

Real-time computational tractability is a key issue for this type of guidance 
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Figure 16: Vehicle trajectory for simulation 3: the helicopter starts from hover at 
(0,O) and has to go to a location 30m ahead (30,0), and then back to a destination 
offset 10m from the departure point (0,lO). A hammerhead maneuver is available 
to the planner. 

Figure 17: Commands and planner mode. Figure 18: Helicopter states. 
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approach. The type of techniques we used in our system are based on exploiting the 
structure and specific characteristics of the agile trajectory planning problem. They 
work on the principle of decoupling certain aspects of the decision problem from the 
actual trajectory optimization, and introducing a decision hierarchy. Ongoing and 
future work focuses on formalizing these techniques. 
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